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Low-temperature properties of Heisenberg quantum ferromagnets ("spin 
waves") are derived within a configuration space formalism. Most of the work is 
done without explicitly assuming translational invariance. We provide a general 
criterion, classical domination, to decide about the nature and uniqueness of 
ground states for a large class of quantum ferromagnets. We also analyze and 
clarify the Dyson formalism and indicate why an energy gap between the 
physical ground state and the improper (unphysical) states does not exist. This 
is of particular relevance to the kinematical interaction. Using reflection 
positivity we provide upper and lower bounds to the contribution of the 
dynamical interaction to the free energy. In a certain approximation, these 
bounds imply that the dynamical interaction may be dropped if the inverse 
temperature/~ and the spin quantum number S are large enough. 

KEY WORDS: Spin waves; Heisenberg ferromagnet; ground state; low- 
temperature behavior; Holstein-Primakoff Hamiltonian; Dyson Hamiltonian; 
kinematical interaction; dynamical interaction; reflection positivity. 

1. INTRODUCTION AND SYNOPSIS 

F o r  qui te  a long t ime sp in-wave  theo ry  has  cal led for a s imple  and 

t ransparent ,  yet  m a t h e m a t i c a l l y  r igorous ,  fo rmula t ion .  The  present  s i tua t ion  

is well  i l lus t ra ted by quo t ing  a def ini t ion o f  the no t ion  o f  spin wave  as it still 

holds,  but  was given by D y s o n  in his m o n u m e n t a l  work  ~'2) on the subject :  

" a  single reversed  spin d is t r ibuted coherently over  a large number  of  
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otherwise aligned atomic spins in a crystal lattice" (the italization is ours). 
This definition clearly isolates two important ingredients of the usual spin- 
wave theory: (a) the system is translation invariant, and (b) the temperature 
is low, far below the critical point (if any), so that the situation may be 
described as a small deviation from the ground state. But whereas the second 
condition is necessary to obtain a justification of linear spin-wave theory, 6 
the former condition seems less relevant and is certainly not appropriate in 
the study of random systems. (6) 

There are two, at first sight different, approaches to spin-wave theory. 
The first and earliest stems from Bloch himself (v) and corresponds to the 
definition referred to above. The second originated from the work of Holstein 
and Primakoff (8) and was further developed by van Kranendonk and van 
Vleck. ~ It consists in introducing first a certain Boson representation at 
each site, in terms of which the Hamiltonian is expressed. Then the 
Hamiltonian is reduced to a bilinear form and diagonalized exactly. It turns 
out that the latter approach, which explicitly reduces the original dynamical 
system to an ideal Bose gas of magnons, is more fruitful and that, in the 
translation invariant case, it is fully equivalent to the original Bloch 
approach. 

Our present considerations apply to ferromagnets only. Ferromagnets 
have a well-defined and, under suitable conditions, unique ground state, 
which is known explict ly--a fact which will be crucial to our analysis later 
on. Nevertheless, it still remains quite remarkable that as Anderson ~t~ has 
shown, the ground-state energy of a Heisenberg spin-l/2 anti-ferromagnet in 
the linear spin-wave approximation is only 3 % off the exact value. We have 
verified that the error for the one-dimensional spin-l/2 X Y  model with 
various degrees of anisotropy amounts to approximately 5 %. In both models 
the ground state of the infinite system was taken to be the classical one, 
which is expected to become exact for large values of the spin quantum 
number S. 

In Section 2 we present a classical domination principle. It enables us to 
decide quickly--for  any S and any dimension v--whether a Hamiltonian has 
a ferromagnetic ground state and, if so, whether this ground state is unique. 
In Section 3 we introduce the physical Hamiltonian, which is positive and of 
direct relevance to later work, analyze the Holstein-Primakoff formalism, 
and shed new light on Dyson's work. (1'2) Everything is done in configuration 
space, and nowhere do we invoke translational invariance. In contrast to 
Dyson, (2) we find a multitude of states in the so-called improper Hilbert 
space, with the same energy as the physical ground state (see Appendix A). 

6 More  recently,  it was proven tha t  spin waves p lay  a s l ight ly  different role near  the cri t ical  

point,  in the form of " inf rared  bounds" .  ~3 ~) 
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Hence there is no volume-independent energy gap between the improper 
Hilbert space and the ground state. 

The Holstein-Primakoff approach directly aims at constructing a 
quadratic boson Hamiltonian in configuration space. To obtain this 
Hamiltonian one has to drop both the kinematical interaction, which refers 
to the restriction that the number of boson excitations at any site x should 
not exceed 2S, and the dynamical interaction, which incorporates some 
quartic terms. The nonexistence of the energy gap referred to above directly 
bears on the study of the kinematical interaction. In view of the existing 
difficulties (Appendix A) we did not spend too much effort on this problem, 
however. 

What can be said if we first drop the dynamical interaction so as to 
obtain the "kinematical" Hamiltonian? Employing reflection positivity 
(whose present usage requires translational invariance--see Section 4) and 
admitting a plausible approximation (for large S) discussed in Section 4, we 
are able to obtain satisfying results (Theorem 4.6) on the asymptotic equality 
of the full and the kinematical free energy provided fl and S are large 
enough. This is an important step into the direction of a low-temperature 
expansion of the free energy, 7 and we hope our paper may provide additional 
stimulation for further research on the subject. 

2. CLASSICAL DOMINATION 

Ground states of quantum Heisenberg models have received 
considerable interest ever since the conception of the model. The most 
famous Ansatz was given by Bethe ~12) for an antiferromagnetic chain of 
spins 1/2. But, to determine the ground state, one would like to have a 
general principle that is valid, at least in the ferromagnetic case, in any 
dimension, and not only for spins 1/2. 

Throughout this paper we adopt the following Hamiltonian: 

1 

H,,= T ar,y~A 
{J(x, y)[S,(x) s,(y) + s2(x) s2(y)] 

q-J3(x'J)[g2(x)S3(J)-S2]} q-h Z [S3(x)q-s] (2.1) 
arEA 

with 

J3( x, Y) ) I  J( x, Y)t (2.2) 

v A complete low-temperature asymptotic expansion for the free energy of the classical XY 
model has been achieved recentlyJ TM The methods used in Ref. 11 are, however, inherently 
classical. 
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and h/> 0. For the moment we put h = 0. As usual, A is a finite domain in 
the (hyper) cubic lattice Z ~. At each site x we have a spin angular 
momentum S(x). The spin quantum number S may assume any of its 
allowed values: 0, 1/2, 1,.... But all spins are to be equal. So, once chosen, S 
is fixed for the whole lattice. Finally we suppose J and J3 to be short range, 
with J(x, x) = J3(x, x) = 0. 

Is it true that (2.1) has a ferromagnetic ground state for any S, and is 
the ground state unique if some, or all, of the inequalities are strict? These 
questions arise in a very natural way. So it is desirable, as we noted above, 
to provide the answers by means of a general, but simple, principle: classical 
domination. 

We mean by classical domination that the z terms in (2.1) dominate the 
xy terms. More spcifically, 

S 2 -- S3(x ) S , ( y )  • + [SI(X ) SI(Y ) + Sz(x ) S2(Y)] (2.3) 

For the spcial case S = 1/2 this operator inequality was proved by Hepp. (13) 
He proposed to verify (2.3) explicitly by using the 4 • 4 matrix represen- 
tation of the spin operators. For higher S values this proposal is not very 
practical, however. 

To prove (2.3) let us start with the case where the plus sign holds, viz., 
S 2 >/S(x) �9 S(y). Adding the two spin operators S(x) and S(y) we obtain the 
total spin S = S(x) + S(y), with the spin quantum number L ranging from 0 
up to 2S. Proving the inequality 

S(x) .  S(y) ~< S 2 (2.4) 

is equivalent to verifying 

IS(x) + S(y)] 2 ~< 2S(2S + 1) (2.5) 

which is evident since 0 ~< L ~< 2S. So we have shown 

S 2 - S3(x ) S3(y) > +[&(x)  & ( y )  + S2(x ) S2(y)] (2.6) 

Let us now perform a canonical transformation, 

S~(y)--+ - S l ( y ) ,  S2(Y) ~ -S2(y) ,  S3(y)--+ S2(Y) (2.7) 

which is nothing but a rotation of S(y) through ~r about the z axis. The new 
spin angular momentum is as good as the old one, so it obeys (2.6), and thus 
we find 

S 2 - S3(x) S3(y) > / - [ S l ( x )  SI (y )  + S2(x) S2(y)] (2.8) 



Spin Waves in Quantum Ferromagnets 191 

The classical domination inequality may be used to advantage if we 
want to determine the ground state of the Hamiltonian (2.1), given the 
condition (2.2). First we notice that the state with all spins down, parallel to 
the negative z axis, is an eigenstate of H A with eigenvalue zero. Then we 
apply (2.3) so as to obtain 

1 
I-Ia>>- T Y~ [ J 3 ( x , y ) - [ J ( x , y ) l ] [ S 2 - S 3 ( x ) S 3 ( y ) ]  (2.9) 

X,yEA 

where, by (2.2), the coefficients are positive. The right-hand side of (2.9) is 
classical and, clearly, positive. Thus H A >/0, and an eigenstate with eigen- 
value zero is a ground state. In a similar vein we could have shown that all 
spins up represent another ground state. If h > 0, the spin-flip symmetry is 
broken, and the configuration with all spins down remains as the only 
ground state. Plainly, if J3(x, y)=J(x, y ) >  0 and h > 0, even the full 
rotation symmetry is broken. 

The uniqueness problem associated with the ferromagnetic ground state 
has already been touched upon. We now prove that between the ground-state 
energy E 0 and the energy of the first excited state there exists a gap, whose 
width does not depend on A, provided for each x in A we can find a y in A 
such that 

J3(x, Y) --IJ(x, Y)i/> e > 0 (2.10) 

for some fixed e. Moreover, the state with all spins down represents the 
unique ground state of (2.1), up to spin flip symmetry. 

If h > 0, the assertion is trivial and (2.10) is superfluous. So let us 
suppose h = 0 .  Given A, let S denote the total spin in A; S 3 is its z 
component. S 3 and H A commute, so they may be diagonalized simulta- 
neously in the Hilbert space "~a that is used to describe the composite system 
of IAI spins. (tAI is the number of sites in A). In the orthogonal complement 
of the two states with all spins up and all spins down at least one spin has 
been flipped. Then (2.9) and (2.10) imply that in this orthogonal complement 
H a satisfies the relation H A >~ eS > 0, so that the gap between E 0 and the 
energy of the first excited state is at least eS, independent of A. An example 
where (2.10) is realized is provided by a ferromagnetic Heisenberg model 
with finite anisotropy and periodic boundary conditions; cf. Section 4. 

3. PHYSICAL HAMILTONIAN, HOLSTEIN-PRIMAKOFF 
APPROACH, AND DYSON'S FORMALISM 

The spin wave formalism amounts to a boson representation of the low- 
temperature elementary excitations of a spin system. It, therefore, is natural 
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to study the ground-state ( T =  0) representation first (Section 3.!). This 
representation gives rise to the so-called physical Hamiltonian, which is 
basic to all that follows. In Section 3.2 we provide the prerequisites for the 
Holstein-Primakoff approach, and in Section 3.3 we shed new light on the 
Dyson formalism. 

3.1. The Physical Hamiltonian 

The more usual Hamiltonian describing a Heisenberg ferromagnet is 
given by 

H F - �89 ~ {J(x, y)[S,(x)  S1(y ) + S2(x ) S2(Y)] 
x , y  

+ J,(x, y)[S3(x) s,(y)]} + h S,(x) (3. !) 
x 

Here x and y range through Z ~, and F stands for formal. The coefficients 
J(x, y) and J3(x, y) obey (2.2). With h > 0 the model gives rise to a unique 
ground state, which, for any S and v, is represented by all spins down. We 
wish to derive some properties of the physical Hamiltonian, an object which 
is intimately related to both the ground state and H v. 

The lattice being infinite, we consider the incomplete tensor product 

g)= @ C zs+l (3.2) 
X E Z v 

with respect to the ground state @x 9 +(x)= [0), where ~0 ;(x) is the state 
with spin down at x. The Hilbert space .~ is generated by 

with 

1] S +(x) Io) (3.3) 
x 

m(x)=O, 1 ..... 2S and ~" m(x) < oo (3.4) 
x 

that is, by finite products of spin creation operators working on 10). The 
linear space of these generating vectors we call ~s .  The vectors (3.3) 
constitute an orthogonal, though not yet normalized, basis for .~. If the 
restrict x to a finite domain A, we find the local Hilbert space "~A that fully 
suffices to describe the finite system inside A (whatever the temperature). 

Finite products of local spin operators {S+(x), S (x), and S3(x)} 
generate the local algebra Ol L. Its completion, the quasilocal algebra, is 
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denoted by 91. In 91 we have a dynamical evolution a t generated by HE. O4A5) 

Now the physical Hamiltonian is defined as the (unique) self-adjoint 
operator H in $ such that 

91L ~ A ~ at(A ) = lim em~tAe -in~t 
A ~o~3 

= e mt Ae -mr (3.5) 

gives the time-evolution automorphism of 91, and 

e;"' 10) = 10) H 10) = 0 (3.6) 

i.e., H annihilates the ground state. .~ itself is nothing but the GNS Hilbert 
space (16) of the ground-state expectation functional. The operator H is well 
defined on a dense domain in ~, viz., ~ s  as given by (3.3), though (14) 

A slightly modified ~ s  where we replace S+(x)  by Si(x), i = +, --, or 3, 
would do as well. That is, for A in 91L we could define HA 10) = [H F, A ] 10). 
Finally, it turns Out (16) that H is positive. 

Conversely, to obtain an explicit expression for the physical 
Hamiltonian, we have to find a positive operator H such that H has the same 
commutation relations as H r, and H I 0 ) = 0 .  In a more mathematical 
language H and H E give rise to the same derivation. It is not hard to see that 
H, when restricted to a finite region A, must be given by (2.1). The positivity 
follows from (2.9), and H I 0  ) = 0 is evident, as is (3.7). Since, for any local 
A, atA is analytic in t in a neighborhood of the origin, (16) we may infer 
directly that H has ~ s  as a dense domain of analytic vectors and, thus, is 
essentially self-adjoint on c2 s. 

In conclusion, H A as given by (2.1) is the restriction to A of the 
physical Hamiltonian H. Since H is obtained from H F by adding an "infinite 
positive constant," their restrictions to finite domains generate essentially the 
same thermodynamics--a t  any temperature. It, therefore, suffices to study 
the system {H A ; A ~ 7/~ }. In fact, to make sense out of spin waves we need 
the limit S ~ oo together with a certain scaling and the inverse temperature fl 
as adjustable parameter and it is then even imperative to use the physical 
Hamiltonian. 

3.2. The Holstein-Primakoff Approach 

In the limit S ~ oo two methods of scaling are rather natural. One 
method consists in scaling each spin operator S(x) by S -1 so as to get 

822/37/1-2-13 
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S-1S(x). Then ~17) the quantum mechanical model becomes classical as 
S-~ ~ in the sense that the quantum free energy (ground-state energy) and 
expectation values of intensive observables converge to their classical values, 
with vectors S(x) ranging over the unit sphere. Moreover, the order of taking 
the limits A ~ ~ and S ~ ~ is immaterial. 

Since Bloch ~7) another method has been practiced in solid-state physics. 
It was rationalized up to a certain extent by Holstein and Primakoff (8) and, 
roughly, amounts to scaling each S(x) by S-1/2 so as to obtain boson modes. 
As we will discuss Dyson's work ~1'2) later on, we quickly turn to the method 
itself. Our exposition is akin to, but in certain details different from some 
known constructions, ~18) which do not seem to be standard, however, and it 
is germane to applications in subsequent work. 

At the site x the "vacuum" is taken to be ~0 T(x), and denote by [0) (par 
abus de langage). S+(x)  operates repeatedly on [0) to generate an 
orthonormal system of 28 + 1 eigenvectors of S3(x) 

1 l s+(x) ]"  
In(x)) =F(n) -1/z ~ [(28)1/2 j I 0) (3.8) 

Following Dyson ~1) we define the metric tensor F by 

( F ( n ) = l  1 - - ~  ... 1 28 " ' n = O ,  1 ..... 2S 

F(n) = O, n >/ 2S + 1 

(3.9) 

and introduce the function f s via 
n 

fs(n) = 1 - 2---if' n = 0, 1,..., 28 

f~(n) = O, n >/28 + 1 

(3.10) 

Then one may verify 
1 

(28)1/z S+ In) = f~/E(b) (n + 1) 1/z In + I)  

1 
S In) =f~/2(n)  v /n  In -- 1) (28) 1/2 

(3.11) 

which is to be compared with a ] n ) = v / - n l n - 1 )  and a + l n ) =  
( n + l ) l / 2 [ n + l )  for a boson pair a and a + satisfying [ a , a + ] = l .  An 
orthonormal basis for $ is defined through 

t{n(x)})= (~ in(x)) (3.12) 
XE Z v 
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where, as before in (3.4), 

O<~n(x)<~2S and ~ n ( x ) < ~  (3.13) 
x 

Besides .5 we introduce the boson Fock space ~ ' -  with vacuum 10), 
where (magnon) creation and annihilation operators a + (x) and a(x), with x 
in R", act irreducibly, 

[a(x),  a + (y ) ]  = 6x, , ,  [a(x),  a ( y ) ]  = 0 
(3.14) 

a(x) I0)= 0 gx~  Z" 

These requirements determine J -  uniquely. If  we restrict x to A _c Z'", we 
obtain the local Fock space ~ a -  An orthonormal basis of ~ ' -  is given by 

with 

I{m(x)}) = l ~  [m(x)!] -1/2 a(x) m(x) t O) 
X E Z  v 

(3.15) 

m(x)=O, 1, 2,... and ~ m ( x )  < c~ (3.16) 
x 

The finite linear space of the vectors tim(x)}) is denoted by ~;~. 
We now embed .~ one-to-one into the boson Fock space .Y- by 

(3.17) oY ]{m(x)}) = I{m(x)t ) 

Note, however, that m(x) in (3.15) and (3.16) may range from 0 to +or ,  
whereas re(x) in (3.17) is restricted to the range 0 ~< m(x) <. 2S. Thus 5 is a 
proper subspace of.~ r-, which is called the physical Hilbert space. 2 being an 
isometry, .~ and 2 .~  are unitarily equivalent. 8 So we may safely limit our 
discussion to the boson Fock space ~ ' - - - m o r e  spcifically, to the physical 
Hilbert space which we now again call .~. 

Let P(x) be the projection onto the first 2S + 1 boson states at the site 
x, i.e., In(x)) with 0 ~< n(x)~ 2S. Then 

PA = [I  P(x) (3.18) 
x E A  

projects ~ a  onto "~a" When there is no fear of confusion we wilt drop the 
index A. Moreover, let 

a~,(x) = P(x) a*(x) P(x) (3.19) 

8 Doing the mapping the other way around we would have obtained Hepp's ~18) contraction T. 
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One easily verifies (we now also drop the argument x) 

a P = a s ,  Pa + =a~ + 

a~+ as =Pa+aP =Pa+a = a+aP 
(3.20) 

and, with some more effort, 

1 + 1/2 (2s)1/: s+(x) ~ as (x)f~ (x), 
1 

(2S)1/2 S(x)  ~- fls/2(x) as(X) 

S3(x) + S ~- Pa + (x) a(x)P 

(3.21) 

with 

fs(X) = fs(n(x)),  n(x) = a + (x) a(x) (3.22) 

and ~- as a unitary equivalence, f s  is zero outside the physical Hilbert space 
because of (3.10). P andfs  commute. 

Returning to H a as given by (2.1), we rescale h by h -~ hS, and rewrite 
the physical Hamiltonian H in the form 

1-1= - ~ Z {ka( x' y)[S+(x) S ( y )  + S (X) S+(Y)I 
x , y  

+ J,(x, y ) IS , (x)  s , ( y )  - s:]} + hS Z [S3(x) + S] 
x 

Taking advantage of (3.21) we obtain 

(3.23) 

S - I H ~ p  1 y' J(x, -- Y)[ f s  ( x )a ( x )a+(y ) f l /Z (Y ) ]  1/2 

x ~ y  

+ I I -~J3(x,y) n ( x ) + n ( y )  n(x) n(y)  + h \ '  
X , y  S 

or, succinctly, 

= Xy  g S 1 n  ~ P2fsP, ~ ~ s  + ~gg's + hN (3.25) 

where N is the number operator. Let us consider the main term in ~ ,~ ,  
keeping in mind that at the end we have to multiply by P, 

n(x) + n(y)  
n ( x )n (y )  

= n ( x ) f s ( y  ) + n (Y ) f s ( x )  

1 
= n(x) fs(X ) + n ( y ) f s ( y  ) + ~ -  [n(x) -- n(y)] 2 (3.26) 
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define 

and note that 

)~(X) = Z J3( X' Y)  
y 

1 g7 J3(x, y)[n(x)-  n(y)] 2 ~ = ~ ,~(x) f~(x) n(x) + ~ ~_ 
X X,y 

(3.27) 

We may absorb the terms with 2 into ~ Y  so as to get a new operator which 
describes our kinematical interaction, 

•kin s = S f ls /Z(x)a(x)[2(x)fx ,y  --J(x, y)] a+(y)fls/Z(y) (3.28) 
X,y 

The quadratic terms in (3.27) represent our dynamical interaction, 

~sd,.= 1 4S ~ J3(x' y)[n(x) - n(y)] 2 (3.29) 
x,y 

while the remaining diagonal terms are represented by 

~,~diag h ~ n(x) - ~ 2(X)fs(X) (3.30) S ~--- 
x x 

The boson Hamiltonian ~ s  is now given by 

~ S  --~-- ..,q~ ki nS  + ~ d y n  + ~ ' r  g s  (3.31) 

Suppose for the moment h > 0. At "low" temperatures "most" n(x) are 
expected to be "zero." To exploit this idea the Ansatz of Holstein and 
Primakoff ~s) consisted in taking S large, putting f s (x )~  1 in (3.29) and 
(3.30), and dropping ~,~dy, altogether. Then one is left with a quadratic ~ S 
boson Hamiltonian f f  whose interaction matrix is determined by 

D(x, y)= 2(x) 6x,y --J(x, y) (3.32) 

Invoking, for instance, the Gersgorin circle theorem, ~ one easily verifies 
that D is positive definite. If D is strictly positive [if (2.10) holds, or if 
h > 0], the quadratic Hamiltonian may be diagonalized exactly, ~2~ and the 
thermodynamics, including the free energy and the magnetization [cf. 
Eq. (3.21)], trivially follows. 

In the above derivation we already see the relevance of the physical 
Hamiltonian (2.1) being positive. Let us trace back the line of argument to 
see why. Consider H F as defined by (3.1) with h = 0. H F is bilinear in the 
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spin operators. We could find a ground state for H v which may be written as 
a tensor product of one-spin states. These states are eigenstates 9 of S3(x ) 
with maximal or minimal z component. Subtracting the ground-state energy, 
which is known, we get a positive operator H, the physical Hamiltonian. At 
each site x we now may apply the substitution (3.21), which is local and 
refers to the ground state we have found. Since H A is also bilinear, as is 
brought out by Eq. (2.1), the resulting operator ~ in (3.24) is bound to be 
positive, and so is its limit, as S-~ oo. The trace of exp(--fldT(A) would be 
completely ill-defined and the whole formalism would be meaningless if ~ s  
and, hence, ~F had zero or negative eigenvalues. The gist of the argument is, 
however, that the transformation (3.21) is local because the ground state to 
which it refers is a tensor product of suitable one-spin states. Counterex- 
amples where the ground state is a tensor product of two-spin states are 
knownm); here the spin wave formalism breaks down. In antiferromagnets 
with nearest-neighbor interactions ~176 the classical ground state still can be 
found as a tensor product of one-spin states (up and down), and this, in fact, 
suffices to make the quadratic boson Hamiltonian ~'~ positive definite. 

Returning to (3.25) or (3.31) and restricting our attention to a bounded 
region A, we note that the finite linear space ~A of (3.15) with x in A is a 
core of d7~ a,  and JKs, A converges on ~A to JK  A as S -~ ~ .  In view of this 
observation and the inequality ~ / >  hN it is not hard to show that 

ZA(S ) = Tr exp(-f lHa)  = Tr exp(--flP~fs,A P) (3.33) 

converges to Tr exp(--fl~a). However, as it stands this result is not very 
useful. We need an estimate of the difference between the free energyfA(fl, S) 
of H A andfA(fl ) of the quadratic boson Hamiltonian g~a, which is uniform in 
A. We anticipate from Section 4 that this difference is small if S and fl are 
chosen suitably. 

3.3.  The Dyson Formalism 

Though intuitively appealing, the Holstein-Primakoff procedure has 
long called for a justification. Dyson ~ introduced a new, non-Hermitian, 
Hamilton operator ~ .  Since his original derivation was quite involved and 
delicate, we will present here some simple arguments to elucidate the Dyson 
formalism. We need not assume any translational invariance. 

The equilibrium thermodynamics of a finite region A is determined by 
the partition function ZA(S ). We want to prove 

ZA(S ) = Tr exp --flP~ffs.aP = Tr exp --flP~gi~D,AP (3.34) 

9 Possibly after a local rotation at x. 
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where C~D, A is the restriction to A of the Dyson Hamiltonian ~g  D to be 
defined below. 

We start by mapping the orthonormal basis (3.25) onto an orthogonal 
one through the "diagonal" transformation 

yl/2 i{n(x)}) ~_~ Hf(x)l/2 l{n(x)}) (3.35) 
x 

operating in the physical Hilbert space, with n(x)~ S for all x. ~l/z is 
extended to the whole boson Fock space through the identity. The transfor- 
mation f is defined analogously. P and ~- commute. With respect to this new 
basis (3.35) P~fs P is given by 

P F  1 / 2 c ~  S ~- - 1 / 2 p  = p ~  p (3.36) 

i.e., as far as the physical Hilbert space is concerned, ~ is obtained by a 
similarity transformation. Let us quickly check the consequences of (3.36) 
and then return to its definition proper. Denote by A the diagonal matrix 
which multiplies by a(x) at the site x. Then ~ Y  may be rewritten [see 
Eq. (3.24)] 

~ y  = __~_ 1/2Aj A 4- ~_ 1/2 (3.37) 

and thus, by (3.36), 

,~o = -~AJA + + ~"~s + hN (3.38) 

since f is giagonal. In full, 

J fD=- -~  J(x,y)fs(x)a(x)a+(y)+Ji'~s+hN (3.39) 
x,y 

In these equations it is understood that we sandwich by P. Though ~ is 
non-Hermitian, the spectrum of PJfmA P is real and positive because a 
similarity transformation preserves the spectrum; cf. (3.36). Moreover, a 
similarity transformation also leaves invariant the trace. Hence (3.34) holds. 

There is a little subtlety, however, in the above argument. As it stands, 
is not invertible sincefs(2S ) = 0; cf. Eq. (3.10). We, therefore, modify the 

function fs and define fs(2S)= e > 0. The modified operators c ~ ,  A and 
~P'~,A are defined accordingly, and 

Tr exp(--flP~f~, A P) = Tr exp(--flP~'~,A P) (3.40) 

Now let e go to zero. Equation (3.34) follows. From now on fs(2S)= 0 
holds again. 
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We finish the argument by noting that 

P ~ s P = P ~ s  and P ~ P = P ~  (3.41 

The only case which needs some checking is 

fs(x) a(x) 12S + 1) -- 0 (3.42) 

But this is evident once fs(2S)= 0. Thus we may write 

ZA(S ) = Tr P exp(- - f l~ ,a)P  (3.43) 

Note that ~ does not commute with P, although ~ s  does. This last obser- 
vation directly follows from (3.41) and from ~ being self-adjoint. Accord- 
ingly, the physical Hilbert space and its orthogonal complement (the 
"improper" states) reduce ~ s  but not 4 .  Nevertheless (3.43) holds, which 
is the starting point of Dyson's analysis. 

4. D R O P P I N G  THE D Y N A M I C A L  I N T E R A C T I O N  

A first step towards justifying the Holstein-Primakoff approach consists 
in dropping the dynamical interaction P~C'~dsYnp given by (3.29). To this end 
we require translational invariance and, hence, assume periodic boundary 
conditions throughout. Furthermore, we restrict our attention to a nearest- 
neighbor (n.n.) anisotropic Heisenberg model with exchange interactions 

l J+(x ,y ) :~x ,y )  (4.1) 
JCx, y) = adCx, y) 

where 

l J  if , x - y , = l  (4.2) 
J(x, y) = J(x - y) = otherwise 

and 0 < a < 1. The problem will be analyzed in terms of spin operators. 
We write (3.28)-(3.31) in terms of spin operators: 

H a = H km+ Hda yn 

where 

and 

J 
Hdy._  ~ [S , (x ) -  S,(y)] 2 

A -- 4S x , y e A  

(x ,y )n .n .  

1 
H k i n  _ ~, 

2S x,y~a 
S+(x)O~(x, y) s_ (y ) -~s  3" [S,(x) + s] 

x~:A 

(4.3) 

(4.4) 

(4.5) 
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with 

D , , ( x ,  y )  = J z  ,~x,~ - a Y ( x  - y )  (4.6) 

As usual, z = 2v is the number of nearest neighbors of a point in E ~. Above, 
we inverted the order of a(x) and a+(y) in the diagonal term in (3.28), 
leading to a new ~,~i"g, which is given in spin language by the second term 
in (4.5). The latter is "small" near the ferromagnetic ground state 
S3(x ) ~ - S  if S is sufficiently large, and was therefore included in -~ar4kin for 
convenience. We also set h = 0 in (3.30) and replaced the matrix in (3.28) 
by D,(x, y), given by (4.6) [which is equivalent to (4.1)]. The anisotropy 
plays to some extent the role of the external field we left out, and is easier to 
handle. Note that the spin-wave normalization has already been incorporated 
in (4.3)-(4.5). 

To simplify the notation we denote the free energy of H A byf(HA) and 
the one related to "'ar4kin by f(Hakin), the dependence upon fl and S being 
understood. For any Hamiltonian H the expectation value of an observable 
O is defined by 

(O}H = Tr(e-~nO)/Tr e-~"  

In this section we show that the difference between f(HA) andf(H~ i') is 
small if fl and S are chosen conveniently. The physics is clear. If the 
temperature is low, i.e., fl is large, nearly all the spins are down (or up) so 
that [S3(x)-S3(y)]Z/4S is small. Taking suitable linear combinations of 
these few magnon states we get spin waves. On the other hand, those states 
which have large values of [S3(x ) - S 3 ( y ) ]  2 are energetically unfavorable, in 
particular at low temperatures, and, hence, will not contribute appreciably to 
f(HA). However, making these ideas precise is not that simple. We will 
tackle the problem via a series of lemmas. 

Lemma 4.1. 

1 (HaaYn}H~,. 0 <~ f (H  n) -- f(HkA '") <~ - ~  (4.7) 

Proof .  By the Bogoliubov-Peierls inequality (23) 

l /HdYn\ ~ r t H  ~ ,etHkin. ~ 1 

By (4.4) HdA yn is positive, and (4.8) follows. II 
The remaining part of this section is devoted to deriving upper bound 

for the right-hand side of (4.7). Let la(x)) denote an eigenfunction of S3(x ) 
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with eigenvalue - S  <~ a(x) ~ +S, and define projection operators P--a(x) by 
requiring that P+a(x) and P-*(x) project on all the spin states Io(x)} with 
a(x) >/3 and e(x) ~< -3 ,  respectively; 0 ~ 3 ~< S. Then 

P<a(x) = 1 - Pa(x) -- P-a(x) (4.8) 

projects onto Io(x)) with la(x)l < 3. Finally 

P• = P•162176 (4.9) 

projects onto all states la(x)) with a(x) >~ 0 or a(x) <. O. 
Our main general estimate is Proposition 4.2. In principle, it does not 

need any assumption of translational invariance. 

Proposition 4.2. Let x be an arbitrary point in A. If 0 < c~ < S, then 

1 / ar r d y r l \  J ~ / A  / H ~ , , o ~ - -  \ ~  [ ( s - 6 )  2 
IAI 4S y,.,-'7, orx 

+ 2(S + 3)(3S - 3)(P+(x)P-(y))H~. 

+ 8S3(P < a(X))Hk~. ] (4.10) 

Proof. We omit lower index H~ in in (.)n~,. By translational 
invariance we have 

--~-1 (H~AY")= J X ~ ([S3(x)--S,(y)] 2) (4.11) 
IAL 4S y n.n--'7ofx 

where x may be any point in A. Now we get, for any pair (x, y) of nearest 
neighbours in A, 

( (S3(x)-S3(y))  2 ) = ( [ P 6 ( x ) + P  6(x)+P<a(x)] 

X IRa(x) + P-a(x)  + P<a(x)] �9 [S3(x) - S3(Y)] 2) 

<~ 432(P<a(x) P<a(y)) + (S - 6)2{(pa(x)Pa(y) 

+ e-a(x) P a ( y ) ) }  + 8s2(P-a(x) ea(y)) 

+ 2(S + 3)2((1 -- P<a(x)) P< a(y)) (4.12) 

and 

(P+~(x) P+~(y) + P-'(x) P-~(y)) 

= 1 - ( P < ~ ( x ) )  - 2(P~(x)P-a(y)) 

- ( (1  - P < ~ ( x ) )  P < ~ ( y ) )  (4.13) 
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Substitution of (4.13) into (4.12) yields 

([S,(x)-S,(y)] 2) 
~<(S- f i )  2 + 2 ( S + 6 ) ( 3 5 : - 6 ) . ( P + a ( x ) P  a(y)) 

+ 8Sc~(P<a(x)) + ( 3 3 2  - -  6 S f i -  S2)(P<a(x)P<a(y)) (4.14) 

To improve the inequality we may drop the last term from (4.14) since 
362 - 65:a - 5:2 < 0 for 0 ~< 6 ~< S. Equation (4.10) then follows if we sum 
over the nearest neighbors y of x, take (4.11) into account, and use the 
obvious inequality 

( e + ' ( x ) e - ' ( y ) ) ~ <  (e+(x)e-(y)) ! 

In order to transform the local estimates above into global ones (i.e., 
involving all points of A), the notion of reflection positivity (RP) (4'5'21) is 
useful. Let ~r be a plane between lattice sites dividing A into two disjoint 
congruent parts A+ and A . Let ~l(x) denote the algebra of all bounded 
functions of the spins {S;(x), i = 1, 2, 3} and 

% =  | ~(x), ~ = ~ + |  
xEA• 

Given B C 2t, define OB by 

(OB)[{S,(x);i = 1, 2, 3 ;x  C A }] 

=B[{(OS,)(x);i= 1, 2, 3 ; x E A } ]  

where 

(OS,)(x) = S,(0x), i =  1, 2, 3 

and Ox is a reflection of x through m We now state the definition of RP 
which we need in the proofs (see also Ref. 21, Theorem 2.1): 

Definit ion 4.1. A Hamiltonian H A is said to satisfy reflection 
positivity (RP) if 

(F(SF))nA >/0 (4.15) 

for F any bounded function of {S3(x); x E A }  belonging to ~d+. The bar 
denotes complex conjugation. 

Proposition 4.3. Ukin satisfies RP. 
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Proof. By (4.5) and (4.6) 

Hkin 
Jz  

a = 2S ~' [ $2 -S ' ( x )2 ]  
xEA 

aJ 
2S ~ [S,(x) Sl(y  ) + S2(x ) S2(y)] (4.16) 

( x , y ) n . n .  
x,yeA 

Performing a counterclockwise rotation of 7t/2 around the x axis at each site, 
S~(x) ~ S~(x), Sz(x) -+ S3(x), and S3(x ) ~ -S2(x). Hence the second term in 
(4.18) goes over to the "X-Z"  model with the proper sign, which is RP, (2~) 
while the first term is real and of the form (A + OA), with 

Jz 
A -  ~ [S 2-S2(x)21 2S z_ x~A+ 

This 7r/2 rotation is a unitary transformation which commutes with the 0 
operation (in contrast to a rotation of n around the x axis at each point of a 
sublattice). This proves (4.15). I 

Note that the above proof implies (4.15) for any bounded function F of 
all the {St(x ), i =  1, 2, 3}, and hence that "'A/4kin is RP according to the 
stronger criterion of Ref. 21. 

Let now for definiteness v = 3, M ~ N 3 = aN, with = [A 1. We define (cf. 
Fig. 1 of Ref. 21): 

M--I 

Pa = 1~ 
m = 0  

[Sk]~=i UITIt,=0 P+(4m, n , k ) P - ( 4 m  + 1, n ,k)  

• P - (4m  § 2, n ,k )P+(4m § 3, n,k)] (4.17) 

and 

p ~ a =  (~) p<a(x ) (4.18) 
xEA 

Proposition 4.3 and Ref. 21 imply the following corollary. 

Lemma 4.4. 

~,, ,1/la inA) (P+ (x) P -  (Y) )H~" <<- \ r  A/~IkA ~" L( x' Y n.n. 
(4.19) 

/n<6\l / IAI  
(P<'5(X))n~i. ~ \ r  A ]HkAi. gX E A 

We wish to prove that (HdAYn)HkAi, is sufficiently small if fl and S are 
large enough. By Proposition 4.2 and Lemma 4.4 it suffices to show that the 
right-hand sides of (4.19) and (4.20) are small under such conditions. The 
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main tool is the powerful exponential localization theorem of Ref. 21. In 
order to understand what is involved, write 

where 

1 
H k i , =  ~ S + ( x ) D ~ , ( x , y ) S _ ( y ) + C  a (4.21) 

A 2S x,y~a 

Jz 
CA - 2S ~-~ [S + S3(x) ] (4.22) 

xEA 

We shall first assume that the contribution of C A in the right-hand side of 
(4.19) and (4.20) may be neglected. This is the approximation mentioned in 
the Abstract and the Introduction, to be discussed at the end of this section. 
Under this assumption, uk~n is just the first term in (4.21), which may also ~*A 

be written 

where 

H kin = A A + B A (4.23) 

AA _ Jz ~ S+(x)  S_ (x )  
2S  x ~--~ 

Jz  ,~ { S ( S + I ) - S 3 ( x ) [ S 3 ( x ) - I ] }  
2S ~r 

is positive and diagonal, and 

(4.24) 

aJ  
BA -- 2S  ~ S+(x )  S _ ( y )  (4.25) 

(x,y>n.n. 
x , y ~ A  

As in Section 2, we denote by 10)= @x~A I•(X) =-S) the state with all 
spins down. 

~jkin  [.emma 4.5. 10) is the (unique) ground state of both A A and ~Ja , 
corresponding to zero energy. Furthermore, B A is denominated by A a, 

~BA ~ s (4.26) 

Proof. Plainly, H~ in ] 0 ) = A  A 10)= 0. We shall prove that "'At4kin is a 
positive operator with 10) as its (unique) ground state. This follows from 
D~,(x, y )  being a positive-definite matrix, 0 ~< a ~< 1. In fact, take a = 1. Then 
both the matrix [Jz~x,y - J ( x  -- y)] and [Jz6x,y + J (x  -- y)] are positive- 
definite by the Gersgorin disk theorem. (19) Equation (4.26) is an immediate 
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consequence of this observation. Hence 10) is a ground state of JjA~kin" It 
follows from (4.26) that "ar4ki""11 (1 - -a )A A and A A has 10) as its unique 
ground state, therefore 10) is also the unique ground state of H ki". II 

The main idea of the forthcoming proof is the following. P2~ (for 
suitable 6) and PA project onto configurations which have a higher A A 
energy than the ground state of A A, and B A is dominated by A A through 
(4.26). Hence the right-hand sides of (4.19) and (4.20) are expected to 
become small for suitable 6, and fl and S sufficiently large. Notice that the 
choice of HkA in, with just 10) and not @x~A [0"(X) = AF-S) as its unique ground 
state, plays a crucial role. [A positive external field has the same effect.] Our 
main result of this section is the following theorem. 

Theorem 4.6. Let S > 2  and 2 < e < 4 .  Then 

I f ( H A )  -- f ( H ~ " ) l  

JsEz 
<" - i ~  + z J ( 2 s  - c)[(2s + 1) exp(-Z ~') + ~ 1  

+ 2 J z  S -  1--- ~ -  [ ( 2 S + l ) e x p ( - f l ~ / 4 ) + a  a'] (4.27) 

where a = (1 + a) /2  < 1 and in three dimensions (v = 3) 

- -  a )  1/3 

d2= 1 6--6~ It }-~ ; a-)-(l--a) r l  1/3 H 1 / , j  i+ 
(4.28a) 

(4.28b) 

here {x}+ is the greatest integer (-x, and 

F = T  1 + 2S 8-S (4.28c) 

Some remarks are in order. First, the expressions for d 1 and d 2 depend 
on the dimension v and may be obtained for values of v other than three by 
the procedure outlined in Appendix B. Second, the correlation between fl and 
S, apparent from (4.27), arises from the spin wave normalization S -~/2 of 
the spin operators--in contrast to the scaling by S -1 for the classical 
limit. ~2a'av) Third, if fl and S are chosen suitably, the error we make in 
replacing H A by HkA i" is exponentially small in fll/4. 

In view of Lemma 4.1, Proposition (4.2), and Lemma 4.4, we only have 
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to estimate <PA) IliA] and <P~i) 1/IAI, We choose 6 = S - e / 2  (see 
Appendix B). 

Lemma 4.7. Let a and d I be defined as in Theorem 4.6. Then 

(Pa) 1/IAI ~ (2S + 1) exp(--fl ]/4) + 6 a' (4.29) 

Proof. Following Ref. 21 we put 

where 

and 

I f [  IAI (PA} = Z A  1 e -ae r r [ P a e a ( d e ) ]  

+ e - ~  Tr[PAEa(de)] <.Ia +JA (4.30) 

I a = Z 2 1 V  '' z... e a~(O,,PaOi) (4.31) 
zl 

Ja = e-~a lal Tr(ql ) /Z  a (4.32) 

~kin We explain the notation. E a is the spectral measure o ~ - a  , A is a positive 
number to be chosen shortly, Z a = Tr exp(-flH~in), and Y~ denotes a sum 
over all (orthonormal) eigenfunctions of H~ in with eigenvalues e i < A IA i. 
Since e 0 = 0, Z a/> 1. Moreover, Tr ~ = (2S + 1) lal. Choosing A =fl-3/4 we 
obtain 

j~/lal <~ (2S + 1) exp(-fl  1/4) 

Because 

we are left with estimating I~/ial. This is done by using (4.26) and the 
exponential localization theorem (Theorem 3.1 and Corollary 3.2 of Ref. 21). 
The final expression for dl is derived in Appendix B. II 

We now finish the argument by giving an estimate for ( P ~ ) .  

Lemma 4.8. Define a and d2 as in Theorem 4.6. Then 

(p~a)a/lal < (2S + 1) exp(-fl  1/') + cr a: (4.33) 

Proof. We proceed as in the proof of the previous lemma. The 
expression for d z is given in Appendix B. I 

The previous results have been derived negleclting C a in (4.21). We 
now present an argument to justify this procedure. Let ~4ki, still be defined x~ A 
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by (4.23)-(4.25). The true Hka in, which is given by (4.21), will be denoted 
henceforth by ~kin With this notation, x a  A �9 

By (4.21) and (4.22) 

/ • k i n  = Hkin a + C a (4.34) 

k i n  [CA, Ha ] = [Ca,/~kin] = 0 (4.35) 

14kin and {ei} the corresponding Let {~i} be the normalized eigenstate of " ' a  , 
eigenvalues, as in (4.30)-(4.32). By (4.35) the ~i i are also eigenstates of C a 
with eigenvalues we call f / :  

CA 0i = f~0~, f,- ~< 0 (4.36) 

We may now write as in (4.30)-(4.32) 

(Pa)~k2. =/~a + JA (4.37) 

where 

[A = Z A !  Z 
(ei+fi)<A IAI  

1 

(ei• ~> A IAI  

<~ e -~alal  Tr 

e ~(~'+sl)(O i, PA Oi) 

e ~(~i+I;)(0 i, PAOi) 

(4.38) 

(4.39) 

We now argue that for low-lying states in the sum (4.38), the contribution of 
f/  is 0(l/S) with respect to e i and may be neglected for S sufficiently large. 
In fact, in Boson language 

gRAin 

C A - 

Iff~ ~ 1 in (4.40), 

g k i n  

x,yciA 

+ Cx~ rl/~x~ D rx y) f~/Z(y) a(y) ~ .  a \ ) d S  k ] a I, , 
X,yEA 

Jz 
2S Z a +(x) a(x) 

xEA 

a+(x)D~(x ,y)a(y)>/(1--a)  ~ a+(x)a(x) 
xEA 

(4.40) 

which "dominates" C A for S sufficiently large. Alternatively, the low-lying 
eigenvalues of A a [given by (4.24), and which dominates B A by (4.26)], are 
O(1) while the corresponding fi  in (4.36) are O(1/S). A rigorous proof of 
this approximation depends, however, on more information about the 
spectrum of Hka in on SA. 
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5. CONCLUSION 

Throughout this paper we have worked in configuration space. This is 
of particular relevance to applications in random systems, (6) where a 
(classical) ground state may be known, but translational invariance of the 
Hamiltonian fails completely. In Sections 2 and 3 we could dispense with 
translational invariance altogether. On the other hand, in Section 4, we 
needed both translational invariance and nearest-neighbor interactions so as 
to take advantage of reflection positivity. 

Even for a < 1 the approximation discussed at the end of 
Sect ion4--however  plausible--still  has to be justified rigorously. In 
addition, it must be kep in mind that we finally wish estimates in the limit 
a--,  1 (or, alternatively, for a = 1 and in the limit of zero external field). 
These difficulties seem to be much deeper, and in the case of the kinematical 
interaction are related to those encountered in Appendix A. Nevertheless, 
even under the above limitations, Theorem4.6 indicates an interesting 
feature. The point is that we may scale the local spin operators S(x) in two 
different ways: by S -~ to obtain the classical limit, (21'17) and by S -~/2 to 
obtain the spin wave limit. The latter is expected to be suitable for studying 
low-temperature excitations. Indeed, our estimates in Section4 become 
accurate if S is large enough and the temperature is low enough, i.e., the 
inverse temperature fl is high enough. Surprisingly, the choice of fl depends 
on S. This is indicative of an asymptotic (in contrast to convergent) 
expansion, whose form is suggested by Theorem 4.6. 
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APPENDIX A 

In this appendix we show that, in contrast to Dyson's suggestion 
[Ref. 2, Eq. (47)], there is no energy gap between the physical ground state 
and the improper Hilbert space. Since in Dyson's argument the external 
mgnetic field does not play any role, we will put h = 0 (in Dyson's  notation, 
L = 0). Throughout what follows we assume a translation-invariant, nearest- 
neighbor, ferromagnetic Heisenberg model with ground-state energy E 0. 

Let g be a subset of A. To each x in g we assign, as in Ref. 2, a number 
M(x) >~ 2S + 1. Let 2~t be the subspace of ~ a  consisting of the linear span 
of states I{m(x)}) with m(x)=M(x) if x is in g and m(x)<. 2S i f x  belongs 

822/37/1-2-14 
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to g = A \ g ;  cf. Eq. (3.15). In spin language the restriction of the Dyson  
Hamil tonian a~o, a (Section 3.3) to 2 M may  be written 

H~t = E 0 + 1JZ 1 [8 2 -- S(x)  S(x -}- 5)] 

+ �89 - S3(x + 6)] ( a .1 )  

This is Dyson ' s  equation (36) in Ref. 2. 221 denotes a sum over pairs 
(x, x + 5) of  nearest neighbors which are both in g, and ~'2 is a sum over 
nearest neighbors x and x + 5 with x in g and x + 5 in g. 

Now let g consist of  one point, and take m(x) = 2S for all x in g, i.e., 
o(x) = +S. Then we have obtained an eigenstate of  H M with eigenvalue E o. 
In fact, a host of  such states exist, even with I g] = O([A [). To see this, 
decompose A into two sublattices g and g such that all points in g and g are 
nearest neighbors, and let m(x)= 2S for all x in g. Then the first sum in 
(A.1) is empty,  and any improper  state consistent with the above 
prescription is an eigenstate of  Z 2 with eigenvalue E 0. 

APPENDIX B 

We now provide the estimates for d., and d 2 used in the main text. For  
the sake of definiteness we take v = 3, and follow the notation of Ref. 21, 
which does not always agree with the rest of  this paper. Let Pa  be a 
projection onto eigenvectors q / o f  A A with eigenvalues exceeding p = nA [A I, 
for some positive A and n > 1, and let Po project onto all the eigenstates of  
A a with eigenvalues in [p, oo). Moreover,  define d by the condition 

( 1 - P o ) [ B a ( A a - 2 )  1 ] dl/./:i/= 0 

(1 -- Po)[BA(Aa --  ~)-- l ] j  ~r O, j = 0 ,  1,..., d -  1 
(~.1) 

where ~u is an arbitrary normalized vector in the range of P A  : PAI// ---- q/ and 
2 < p. Denote by E,a  p the difference between the minimal A n energy of any 
state in PA ~ and p: 

Egap = infspec{(PaAaPa) - -p}  > 0 (B.2) 

Then d is the number of  times B A may be applied to (Y without lowering the 
AA-energy by more than Ega p. In models with a ferromagnetic ground state 
an estimate for d may  be obtained in the following way. 

Eigenstates o f A  a in (1 - P o ) 5  are "near"  the ground state. Let l/> 2 be 
an integer such that ]A 11/3/I is also an integer, and decompose A into }A Ill 3 
disjoint congruent cubes c, with sides of  length I. Let ~ be an eigenvector of  
{S3(x), x E A }. For 4, a perfect cube is defined to be a cube c = co such that 
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S3(x)O=-SO for all x in %. Otherwise the cube is called imperfect. 
Suppose the Aa-energy of ~ is smaller than p. We must answer two 
questions:(21) 

(a) What is the minimum number of perfect cubes necessary to obtain 
a state with such a low A A energy? 

(b) How many times must B a be applied to convert an imperfect cube 
into a perfect one? 

Turning to (a), we set the A a energy of a perfect cube equal to zero. 
Then the A a energy of an imperfect cube is positive. Its minimal A a energy 
is greater than or equal to the energy obtained in a configuration where at 
one site, say x o, a3(Xo) > - S  and a3(x ) = - S  at all other sites x 4: Xo, i.e., 

man ( Jz ) o~x)>-s - ~ { S ( S + l ) - a ( x ) [ a ( x ) - l ] }  = J z  (B.3) 

See also Eqs. (4.18)-(4.20). A a is diagonal with respect to the usual basis of 
eigenvectors of S3(x ), characterized by the eigenvalues a(x), x EA.  The 
minimal number N of perfect cubes for a state 0 with AA-energy <p then 
satisfies the inequality 

(IA 1/l 3 -- N)  Jz <~ nA ]A I 

so that 

N~IAI (l -3- n A)jz (B.4) 

Since 1~> 2, nA <Jz /16 .  
The rest of the argument is now identical to Ref. 21, p. 260. We obtain, 

with A =fl-3/4 and n = (1 + a)/(1 - a), I A <~ a d; and 

d'l>/ I 32 [ 2 ( l + a )  + 

Using (4.25) we finally get (4.24) and d I . 
To estimate d2, we define a cube % to be perfect for an eigenstate O of 

{S3(x); x C A }, with S3(x)f) = a(x)#,  by the requirement a(x)  < - 2 S  for all 
x in %. Here 1 - 1 / S < 2 <  1 - 1 / ( 2 S ) .  Then it is easy to see that the 
minimal A a energy of an imperfect cube is given by 

rain ( J~ ) =tx)>-as ~ { S ( S  + l)-a(x)[a(x)- l]} 

Jz 
= ~ - ( 1  - 2)[S(1 + 2 ) +  1] -=F (B.6) 
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The min ima l  n u m b e r  N of  perfect cubes for a state 0 of  A A energy <p 

satisfies the inequal i ty  

so that  

(IA Ill 3 - N ) r  <~ nA IA k 

N>/IAI (1- 3 - hAlF) (B.7) 

Since l >~ 2, nA < F/16. 
If  we wan t  to get a perfect cube by  apply ing  B a to a vector  v / i n  the 

range  of  P ~ ,  we have to apply  B a at least m times,  where 

m ~> (2S - 6 ) P / 8  (B.8) 

Equa t ion  (B.8) follows from an a rgumen t  s imilar  to Ref. 21, p. 260:13 spins 

in a cube mus t  be lowered at least from o3(x ) = - f i  to ~ 3 ( x ) = - ~ l S ,  i.e., 

o3(x ) mus t  change by at least (,~S-fi). Choos ing  )~ = 1 -  e/4S,  and  fi = 

S - c/2, and  tak ing  n and  A as before, we find 

and  

l e lAI  / 1 - a  \ ~/3 I 
' I . . . . .  1"~ ~/~  d2 ~ ( ~ -  \2(1 + ct) ] (B.9) 

+ 

2s s-s (B.10) 

Notice  that  the condi t ions  2 < e < 4 assumed on e are precisely cons is tent  

with the inequal i t ies  1 -  1/S < 2  < 1 -  1 / (2S)  which were previous ly  

required. 
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